The Hierarchical Fair Competition (HFC) Framework for Sustainable Evolutionary Algorithms

نویسندگان

  • Jianjun Hu
  • Erik D. Goodman
  • Kisung Seo
  • Zhun Fan
  • Rondal Rosenberg
چکیده

Many current Evolutionary Algorithms (EAs) suffer from a tendency to converge prematurely or stagnate without progress for complex problems. This may be due to the loss of or failure to discover certain valuable genetic material or the loss of the capability to discover new genetic material before convergence has limited the algorithm's ability to search widely. In this paper, the Hierarchical Fair Competition (HFC) model, including several variants, is proposed as a generic framework for sustainable evolutionary search by transforming the convergent nature of the current EA framework into a non-convergent search process. That is, the structure of HFC does not allow the convergence of the population to the vicinity of any set of optimal or locally optimal solutions. The sustainable search capability of HFC is achieved by ensuring a continuous supply and the incorporation of genetic material in a hierarchical manner, and by culturing and maintaining, but continually renewing, populations of individuals of intermediate fitness levels. HFC employs an assembly-line structure in which subpopulations are hierarchically organized into different fitness levels, reducing the selection pressure within each subpopulation while maintaining the global selection pressure to help ensure the exploitation of the good genetic material found. Three EAs based on the HFC principle are tested - two on the even-10-parity genetic programming benchmark problem and a real-world analog circuit synthesis problem, and another on the HIFF genetic algorithm (GA) benchmark problem. The significant gain in robustness, scalability and efficiency by HFC, with little additional computing effort, and its tolerance of small population sizes, demonstrates its effectiveness on these problems and shows promise of its potential for improving other existing EAs for difficult problems. A paradigm shift from that of most EAs is proposed: rather than trying to escape from local optima or delay convergence at a local optimum, HFC allows the emergence of new optima continually in a bottom-up manner, maintaining low local selection pressure at all fitness levels, while fostering exploitation of high-fitness individuals through promotion to higher levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HFC: a Continuing EA Framework for Scalable Evolutionary Synthesis

The scalability of evolutionary synthesis is impeded by its characteristic discrete landscape with high multimodality. It is also impaired by the convergent nature of conventional EAs. A generic framework, called Hierarchical Fair Competition (HFC), is proposed for formulation of continuing evolutionary algorithms. This framework features a hierarchical organization of individuals by different ...

متن کامل

HEMO: A Sustainable Multi-objective Evolutionary Optimization Framework

The capability of multi-objective evolutionary algorithms (MOEAs) to handle premature convergence is critically important when applied to realworld problems. Their highly multi-modal and discrete search space often makes the required performance out of reach to current MOEAs. Examining the fundamental cause of premature convergence in evolutionary search has led to proposing of a generic framew...

متن کامل

Robust and Efficient Genetic Algorithms with Hierarchical Niching and a Sustainable Evolutionary Computation Model

This paper proposes a new niching method named hierarchical niching, which combines spatial niching in search space and a continuous temporal niching concept. The method is naturally implemented as a new genetic algorithm, QHFC, under a sustainable evolutionary computation model: the Hierarchical Fair Competition (HFC) Model. By combining the benefits of the temporally continuing search capabil...

متن کامل

Competition Model for Sustainable Innovation in Genetic Programming

Lack of sustainable search capability of genetic programming has severely constrained its application to more complex problems. A new evolutionary algorithm model named the continuous hierarchical fair competition (CHFC) model is proposed to improve the capability of sustainable innovation for single population genetic programming. It is devised by extracting the fundamental principles underlyi...

متن کامل

The Hierarchical Fair Competition (HFC) Model for Parallel Evolutionary Algorithms

The HFC model for evolutionary computation is inspired by the stratified competition often seen in society and biology. Subpopulations are stratified by fitness. Individuals move from low-fitness subpopulations to higher-fitness subpopulations if and only if they exceed the fitness-based admission threshold of the receiving subpopulation, but not of a higher one. HFC’s balanced exploration and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Evolutionary computation

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2005